Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

The Rb analogue of grimselite, $\mathrm{Rb}_{6} \mathrm{Na}_{2}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$

Karrie-Ann Hughes Kubatko* and Peter C. Burns

Department of Civil Engineering and Geological Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556, USA
Correspondence e-mail: khughes1@nd.edu

Received 18 November 2003
Accepted 9 December 2003
Online 10 February 2004
The crystal structure of the Rb analogue of grimselite, rubidium sodium uranyl tricarbonate hydrate, $\mathrm{Rb}_{6} \mathrm{Na}_{2}\left[\left(\mathrm{UO}_{2}\right)\right.$ $\left.\left(\mathrm{CO}_{3}\right)_{3}\right]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$, consists of a uranyl hexagonal bipyramid that shares three non-adjacent equatorial edges with carbonate triangles, resulting in a uranyl tricarbonate cluster of composition $\left.\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right)\right]$. These uranyl tricarbonate clusters form layers perpendicular to [001] and are interconnected by NaO_{8} polyhedra. The title compound is isostructural with grimselite, with a reduced occupancy of the $\mathrm{H}_{2} \mathrm{O}$ site (25% versus 50% in grimselite).

Comment

The compound $\mathrm{Rb}_{6} \mathrm{Na}_{2}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ was obtained by evaporation of a solution containing $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$, RbNO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at ambient temperature and pressure. $\mathrm{Rb}_{6} \mathrm{Na}_{2}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ is structurally analogous to the mineral grimselite, $\mathrm{K}_{3} \mathrm{Na}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Li \& Burns, 2001). Each contains the uranyl tricarbonate cluster, $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]$, and crystallizes in space group $P \overline{6} 2 c$. However, these two compounds differ in their hydration state.

There is one symmetrically distinct U^{VI} atom in the structure of $\mathrm{Rb}_{6} \mathrm{Na}_{2}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$. This atom is part of a linear uranyl ion, $\left(\mathrm{UO}_{2}\right)^{2+}$, which is coordinated by six equatorial O atoms, forming a uranyl hexagonal bipyramid. Three non-adjacent equatorial edges of the uranyl hexagonal bipyramid share edges with CO_{3} groups, giving the uranyl tricarbonate cluster, $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right.$] (Fig. 1). These clusters share edges with NaO_{8} hexagonal bipyramids, to form heteropolyhedral sheets parallel to (001) (Fig. 2). These sheets are stacked along [001], with voids in the resulting framework containing Rb cations and $\mathrm{H}_{2} \mathrm{O}$ molecules. The $\mathrm{H}_{2} \mathrm{O}$ sites are 25% occupied in the structure of $\mathrm{Rb}_{6} \mathrm{Na}_{2}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]_{2^{-}}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$, whereas they are 50% occupied in the structure of grimselite. This difference in $\mathrm{H}_{2} \mathrm{O}$ content may be attributable to the larger size of the Rb^{+}cation.

Bond-valence sums were calculated for each ion using the parameters of Brese \& O'Keeffe (1991), giving the following values: 6.18 for $\mathrm{U}, 4.15$ for $\mathrm{C}, 1.29$ for Rb and 1.15 for Na

Figure 1
A view of the $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]$ clusters in $\mathrm{Rb}_{6} \mathrm{Na}_{2}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$, shown with 50% probability displacement ellipsoids.

Figure 2
The heteropolyhedral layer of NaO_{8} hexagonal bipyramids (grey) and $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]$ clusters $\left(\mathrm{UO}_{8}\right.$ shown in white, CO_{3} shown in black), projected along [001] (unit cell shown as dashed lines).
(Burns et al., 1997). The bond-valence sum for Rb is based on its coordination environment when the O5 site is occupied, and the partial occupancy of this site may, therefore, represent a way to limit the overbonding of the Rb site. For atoms O1, $\mathrm{O} 2, \mathrm{O} 3$ and O 4 , the bond-valence sums are within the normal range (1.88-2.25). The bond-valence sum for atom O5 (0.32) is consistent with a water molecule.

Experimental

Transparent yellow crystals of $\mathrm{Rb}_{6} \mathrm{Na}_{2}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$, up to 1 mm in maximum dimension, were synthesized from a solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.026 \mathrm{~g}), \mathrm{RbNO}_{3}(0.111 \mathrm{~g})$ and $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2^{-}}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(0.123 \mathrm{~g})$ in ultra-pure water $(25 \mathrm{ml})$. Following evaporation
in an open beaker for 28 d at 293 K under ambient pressure, crystals were recovered from the beaker walls.

Crystal data

$\mathrm{Rb}_{6} \mathrm{Na}_{2}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CO}_{3}\right)_{3}\right]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$
$M_{r}=1476.94$
Hexagonal, $P \overline{6} 2 c$
$a=9.4316$ (7) \AA
$c=8.3595$ (8) A
$V=643.99(9) \AA^{3}$
$Z=1$
$D_{x}=3.808 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1623
\quad reflections
$\theta=3.3-33.8^{\circ}$
$\mu=23.95 \mathrm{~mm}^{-1}$
$T=297(2) \mathrm{K}$
Anhedral, yellow
$0.15 \times 0.12 \times 0.12 \mathrm{~mm}$

Data collection

Bruker APEX CCD area-detector	958 independent reflections
diffractometer	787 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.073$
Absorption correction: empirical	$\theta_{\max }=34.6^{\circ}$
via ψ scan $($ SHELXTL-NT;	$h=-14 \rightarrow 14$
Bruker, 1998)	$k=-14 \rightarrow 14$
$T_{\min }=0.044, T_{\max }=0.056$	$l=-13 \rightarrow 13$

12787 measured reflection

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034\)
\(w R\left(F^{2}\right)=0.085\)
\(S=0.97\)
958 reflections
40 parameters
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.052 P)^{2}\right]\)
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
```

$\Delta \rho_{\text {max }}=2.04 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.69 \mathrm{e}^{-3}$
Extinction correction: SHELXTL-
$N T$ (Bruker, 1998)
Extinction coefficient: 0.044 (8)
Absolute structure: Flack (1983),
with 407 Friedel pairs
Flack parameter $=-0.02(4)$

The positions of the $\mathrm{U}, \mathrm{Rb}, \mathrm{Na}$ and C atoms, and of most of the O atoms, were determined by direct methods. The remaining O atoms were located by subsequent difference Fourier syntheses. The locations of the highest peak and deepest hole in the difference Fourier map are $0.75 \AA$ from U and $0.51 \AA$ from Rb , respectively. H -atom positions were not determined in the refinement. However, atom O2 is a possible hydrogen-bond acceptor, as it is the nearest O atom to $\mathrm{O} 5[\mathrm{O} 2 \cdots \mathrm{O} 5=3.122(9) \AA]$.

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2000); data reduction: SAINT-NT; program(s)

Table 1
Selected bond lengths (\AA).

$\mathrm{U}-\mathrm{O}^{\text {i }}$	$1.779(8)$	$\mathrm{Na}-\mathrm{O} 4^{\text {ix }}$	$2.368(9)$
$\mathrm{U}-\mathrm{O} 2^{\text {ii }}$	$2.418(8)$	$\mathrm{Na}-\mathrm{O} 3^{\text {vii }}$	$2.401(8)$
$\mathrm{U}-\mathrm{O} 1^{\text {(iii }}$	$2.433(6)$	$\mathrm{Na}-\mathrm{O} 1^{\text {vii }}$	$3.018(6)$
$\mathrm{Rb}-\mathrm{O} 2^{\text {iii }}$	$2.822(6)$	$\mathrm{C}-\mathrm{O} 4$	$1.237(14)$
$\mathrm{Rb}-\mathrm{O} 1^{\text {iv }}$	$2.897(9)$	$\mathrm{C}-\mathrm{O} 2$	$1.281(14)$
$\mathrm{Rb}-\mathrm{O} 4^{\mathrm{v}}$	$2.992(7)$	$\mathrm{C}-\mathrm{O} 1$	$1.295(17)$
$\mathrm{Rb}-\mathrm{O} 5^{\text {vi }}$	$3.086(19)$		

Symmetry codes: (i) $x, y, \frac{3}{2}-z$; (ii) $1-x+y, 1-x, z$; (iii) $1-x,-x+y, 1-z$; (iv) $y, x-1,1-z$; (v) $x-1, y-1, z-1$; (vi) $y, x,-z$; (vii) $y, x, z-\frac{1}{2}$; (viii) $1-x+y$, $2-x, z$; (ix) $x-1, y, z$.
used to solve structure: SHELXTL-NT (Bruker, 1998); program(s) used to refine structure: SHELXTL-NT; molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXTL-NT and WinGX (Farrugia, 1999).

This research was supported by the Environmental Management Sciences Program of the Office of Science, US Department of Energy (grant No. DE-FG07-97ER14820).

Supplementary data for this paper are available from the IUCr electronic
archives (Reference: BC1032). Services for accessing these data are
described at the back of the journal. described at the back of the journal.

References

Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (1998). SHELXTL-NT (Version 5.1) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SAINT-NT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART-NT. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
Burns, P. C., Ewing, R. C. \& Hawthorne, F. C. (1997). Can. Mineral. 35, 15511570.

Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Li, Y. \& Burns, P. C. (2001). Can. Mineral. 39, 1147-1151.

