Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

The Rb analogue of grimselite, Rb₆Na₂[(UO₂)(CO₃)₃]₂(H₂O)

Karrie-Ann Hughes Kubatko* and Peter C. Burns

Department of Civil Engineering and Geological Sciences, 156 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556, USA Correspondence e-mail: khughes1@nd.edu

Received 18 November 2003 Accepted 9 December 2003 Online 10 February 2004

The crystal structure of the Rb analogue of grimselite, rubidium sodium uranyl tricarbonate hydrate, $Rb_6Na_2[(UO_2)-(CO_3)_3]_2(H_2O)$, consists of a uranyl hexagonal bipyramid that shares three non-adjacent equatorial edges with carbonate triangles, resulting in a uranyl tricarbonate cluster of composition $[(UO_2)(CO_3)_3)]$. These uranyl tricarbonate clusters form layers perpendicular to [001] and are interconnected by NaO_8 polyhedra. The title compound is isostructural with grimselite, with a reduced occupancy of the H₂O site (25% versus 50% in grimselite).

Comment

The compound Rb₆Na₂[(UO₂)(CO₃)₃]₂(H₂O) was obtained by evaporation of a solution containing UO₂(NO₃)₂(H₂O)₆, RbNO₃ and Na₂CO₃ at ambient temperature and pressure. Rb₆Na₂[(UO₂)(CO₃)₃]₂(H₂O) is structurally analogous to the mineral grimselite, K₃Na[(UO₂)(CO₃)₃](H₂O) (Li & Burns, 2001). Each contains the uranyl tricarbonate cluster, [(UO₂)(CO₃)₃], and crystallizes in space group $P\overline{6}2c$. However, these two compounds differ in their hydration state.

There is one symmetrically distinct U^{VI} atom in the structure of Rb₆Na₂[(UO₂)(CO₃)₃]₂(H₂O). This atom is part of a linear uranyl ion, (UO₂)²⁺, which is coordinated by six equatorial O atoms, forming a uranyl hexagonal bipyramid. Three non-adjacent equatorial edges of the uranyl hexagonal bipyramid share edges with CO₃ groups, giving the uranyl tricarbonate cluster, [(UO₂)(CO₃)₃] (Fig. 1). These clusters share edges with NaO₈ hexagonal bipyramids, to form heteropolyhedral sheets parallel to (001) (Fig. 2). These sheets are stacked along [001], with voids in the resulting framework containing Rb cations and H₂O molecules. The H₂O sites are 25% occupied in the structure of Rb₆Na₂[(UO₂)(CO₃)₃]₂-(H₂O), whereas they are 50% occupied in the structure of grimselite. This difference in H₂O content may be attributable to the larger size of the Rb⁺ cation.

Bond-valence sums were calculated for each ion using the parameters of Brese & O'Keeffe (1991), giving the following values: 6.18 for U, 4.15 for C, 1.29 for Rb and 1.15 for Na

Figure 1

A view of the $[(UO_2)(CO_3)_3]$ clusters in $Rb_6Na_2[(UO_2)(CO_3)_3]_2(H_2O)$, shown with 50% probability displacement ellipsoids.

The heteropolyhedral layer of NaO₈ hexagonal bipyramids (grey) and $[(UO_2)(CO_3)_3]$ clusters (UO₈ shown in white, CO₃ shown in black), projected along [001] (unit cell shown as dashed lines).

(Burns *et al.*, 1997). The bond-valence sum for Rb is based on its coordination environment when the O5 site is occupied, and the partial occupancy of this site may, therefore, represent a way to limit the overbonding of the Rb site. For atoms O1, O2, O3 and O4, the bond-valence sums are within the normal range (1.88–2.25). The bond-valence sum for atom O5 (0.32) is consistent with a water molecule.

Experimental

Transparent yellow crystals of $Rb_6Na_2[(UO_2)(CO_3)_3]_2(H_2O)$, up to 1 mm in maximum dimension, were synthesized from a solution containing Na_2CO_3 (0.026 g), RbNO_3 (0.111 g) and $UO_2(NO_3)_2$ - $(H_2O)_6$ (0.123 g) in ultra-pure water (25 ml). Following evaporation

inorganic compounds

in an open beaker for 28 d at 293 K under ambient pressure, crystals were recovered from the beaker walls.

Crystal data

Rb₆Na₂[(UO₂)(CO₃)₃]₂(H₂O) $M_r = 1476.94$ Hexagonal, $P\overline{6}2c$ a = 9.4316 (7) Å c = 8.3595 (8) Å V = 643.99 (9) Å³ Z = 1 $D_x = 3.808$ Mg m⁻³

Data collection

Bruker APEX CCD area-detector diffractometer φ and ω scans Absorption correction: empirical via ψ scan (SHELXTL-NT; Bruker, 1998) $T_{\min} = 0.044, T_{\max} = 0.056$ 12 787 measured reflections

Refinement

```
Refinement on F^2

R[F^2 > 2\sigma(F^2)] = 0.034

wR(F^2) = 0.085

S = 0.97

958 reflections

40 parameters

w = 1/[\sigma^2(F_o^2) + (0.052P)^2]

where P = (F_o^2 + 2F_c^2)/3

(\Delta/\sigma)_{max} < 0.001
```

Mo $K\alpha$ radiation Cell parameters from 1623 reflections $\theta = 3.3-33.8^{\circ}$ $\mu = 23.95$ mm⁻¹ T = 297 (2) K Anhedral, yellow 0.15 × 0.12 × 0.12 mm

958 independent reflections 787 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 34.6^{\circ}$ $h = -14 \rightarrow 14$ $k = -14 \rightarrow 14$ $l = -13 \rightarrow 13$

 $\Delta \rho_{\text{max}} = 2.04 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.69 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXTL- NT* (Bruker, 1998) Extinction coefficient: 0.044 (8) Absolute structure: Flack (1983), with 407 Friedel pairs Flack parameter = -0.02 (4)

The positions of the U, Rb, Na and C atoms, and of most of the O atoms, were determined by direct methods. The remaining O atoms were located by subsequent difference Fourier syntheses. The locations of the highest peak and deepest hole in the difference Fourier map are 0.75 Å from U and 0.51 Å from Rb, respectively. H-atom positions were not determined in the refinement. However, atom O2 is a possible hydrogen-bond acceptor, as it is the nearest O atom to O5 $[O2\cdots O5 = 3.122 (9) Å]$.

Data collection: *SMART-NT* (Bruker, 2001); cell refinement: *SAINT-NT* (Bruker, 2000); data reduction: *SAINT-NT*; program(s)

Table 1

Selected bond lengths (Å).

$\substack{ U-O3^i\\ U-O2^{ii}}$	1.779 (8) 2.418 (8)	$Na-O4^{ix}$ $Na-O3^{vii}$	2.368 (9) 2.401 (8)
U-01	2.433 (6)	Na-O1 ^{vin}	3.018 (6)
Rb-O2 ⁱⁱⁱ	2.822 (6)	C-O4	1.237 (14)
Rb-O1 ^{iv}	2.897 (9)	C-O2	1.281 (14)
Rb-O4 ^v	2.992 (7)	C-01	1.295 (17)
Rb-O5 ^{vi}	3.086 (19)		. ,

Symmetry codes: (i) $x, y, \frac{3}{2} - z$; (ii) 1 - x + y, 1 - x, z; (iii) 1 - x, -x + y, 1 - z; (iv) y, x - 1, 1 - z; (v) x - 1, y - 1, z - 1; (vi) y, x, -z; (vii) $y, x, z - \frac{1}{2}$; (viii) 1 - x + y, 2 - x, z; (ix) x - 1, y, z.

used to solve structure: *SHELXTL-NT* (Bruker, 1998); program(s) used to refine structure: *SHELXTL-NT*; molecular graphics: *ATOMS* (Dowty, 2000); software used to prepare material for publication: *SHELXTL-NT* and *WinGX* (Farrugia, 1999).

This research was supported by the Environmental Management Sciences Program of the Office of Science, US Department of Energy (grant No. DE-FG07-97ER14820).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1032). Services for accessing these data are described at the back of the journal.

References

- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Bruker (1998). SHELXTL-NT (Version 5.1) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SAINT-NT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART-NT. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burns, P. C., Ewing, R. C. & Hawthorne, F. C. (1997). Can. Mineral. 35, 1551– 1570.
- Dowty, E. (2000). *ATOMS for Windows*. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, Y. & Burns, P. C. (2001). Can. Mineral. 39, 1147-1151.